Kiss those Math Headaches GOODBYE!

Archive for the ‘Positive & Negative Numbers’ Category

How to Combine Positive & Negative Numbers — Quickly and Easily


If you or someone you know struggles when combining numbers with opposite signs — one positive, the other negative — this post is for you!

To be clear, I’m referring to problems like these:

 – 2 + 7 [first number negative, second number positive], or

+ 13 – 20 [first number positive, second number negative]

To work out the answers, turn each problem into a math-story. In this case, turn it into the story of a tug-of-war battle. Here’s how.

In the first problem, – 2 + 7, view the – 2 as meaning there are 2 people on the “negative” team; similarly, view the + 7 as meaning there are 7 people on the “positive” team.

There are just three things to keep in mind for this math-story:

1)  Every “person” participating in the tug-of-war is equally strong.

2)  The team with more people always wins; the team with fewer people always loses.

3)  In the story we figure out by how many people the winning team “outnumbers” the other team. That’s simple; it just means how many more people are on that team than are on the other team. Example: if the negative team has 2 people and the positive team has 7 people, we say the positive team “outnumbers” the negative team by 5 people, since 7 is 5 more than 2.

Now to simplify such a problem, just answer three simple questions: 

1)  How many people are on each team?
In our first problem, – 2 + 7, there are 2 people on the negative team and 7 people on the positive team.

2)  Which team WINS?
Since there are more people on the positive team, the positive team wins.

3) By how many people does the winning team OUTNUMBER the losing team?
Since the positives have 7 while the negatives have only 2, the positives outnumber the negatives by 5.

Now ignore the answer to the intro question, Question 1, but put together your answers to Questions 2 and 3.

ANSWER TO QUESTION 2:  +

ANSWER TO QUESTION 3:  5

ANSWERS TOGETHER:  + 5

All in all, this tells us that:  – 2 + 7 = + 5

For those of you who’ve torn your hair out over such problems, I have good news …

… THEY REALLY ARE THIS SIMPLE!

But to believe this, it will help to work out one more problem:  + 13 – 20.

Here, again, are the common-sense questions, along with their answers.

1)  How many people are on each team?
In this problem, + 13 – 20, there are 13 people on the positive team and 20 people on the negative team.

2)  Which team WINS?
Since there are more people on the negative team in this problem, the negative team wins.

3) By how many people does the winning team OUTNUMBER the losing team?
Since the negatives have 20 while the positives have only 13, the negatives outnumber the positives by 7.

Just as you did in the first problem, put together your answers to Questions 2 and 3.

ANSWER TO QUESTION 2:  

ANSWER TO QUESTION 3:  7

ANSWERS TOGETHER:  – 7

All in all, this tells us that:  + 13 – 20  = – 7

Now try these for practice:

a)  – 3 + 9

b) + 1 – 4

c)  –  9 + 23

d)  – 37 + 19

e) + 49 – 82

Answer to Practice Problems:

a)  – 3 + 9 = + 6

b) + 1 – 4 = – 3

c)  –  9 + 23 = + 14

d)  – 37 + 19 = – 18

e) + 49 – 82 = – 33

Josh Rappaport is the author of five books on math, including the Parents Choice-award winning Algebra Survival Guide. If you like the way Josh explains these problems, you will very likely like the Algebra Survival Guide and companion Workbook, both of which are available on Amazon.com  Just click the links in the sidebar for more information! 

Reader Input on Slope Post


A longtime reader of Turtle Talk, Jeff LeMieux, of Oak Harbor, WA, sent in a suggestion based on today’s post on positive and negative slope. Jeff found a way to help students remember not only positive and negative slope, but also the infinite slope of vertical lines, and the 0 slope of horizontal lines … all using the letter “N.”

This is clearly a situation where the picture speaks more loudly than words, so I’ll just let Jeff’s submitted picture do the talking. By the way, to see this image even better, just double click it!

slopeclues

Slope Memory Trick

Thanks for putting this together and sharing it, Jeff!

Algebra Survival e-Workbook arrives TODAY!!


The “Algebra Survival” Program goes totally electronic!

Singing Turtle Press is delighted to announce that the companion Workbook for the Algebra Survival Guide is now available in eBook format.

Algebra Survival Workbook - electronic version

e-Version of ASG Workbook ARRIVES!

(more…)

How to decrease Algebraic mistakes – Part 4


Combining integers … does any early algebraic skill cause more problems?

If so, I can’t think of one.

Fortunately, though, using the double-slash notation that I’ve been talking about this week helps students make sense of this tricky topic.

No Mistakes

Let's Reduce Mistakes in Algebra!


Even a problem as simple as the following can be made easier with the double-slash:

– 2 + 5 – 3 + 7 – 9

(more…)

How to Decrease Algebraic Mistakes – Part 1


Anyone who has worked with students learning algebra knows the truth to the maxim:  MISTAKES HAPPEN.

This is the first in a series of posts offering PRACTICAL SUGGESTIONS for decreasing the number of algebraic mistakes students make.

No Mistakes

Let's Reduce Mistakes in Algebra!

First, it’s useful to recognize a key fact:  we can’t help students with mistakes if we don’t know what causes those mistakes.

Years of tutoring have taught me a lot about why students make mistakes. And one major cause of mistakes in algebra is that students combine terms that should not be combined. Not all their fault, though. Students are often confused about what they may and may not combine. And it is tricky!

Take a problem like this:  8 – 2(3x – 7)

Certainly some kids can simplify this expression with no trouble. But in my experience, many struggle with a problem like this (when first learning it), and quite a few stay befuddled for quite some time.

The biggest mistake is that students think they can and should combine the 8 and the 2 through subtraction, proceeding like this:

8 –  2(3x – 7)

=            6(3x – 7)

=            18x – 42

Q:  How can we help students avoid this mistake?

A:  Use a mark that show students what gets combined and what stays separate.

I will start to elaborate on how I do this in tomorrow’s post.

Extra, extra!   I thought it would be interesting for you readers to send in comments on the kinds of algebraic mistakes that “drive you up the wall” the most. When I get a number of comments in, I will conduct a poll to see which mistakes people find most vexing. Should be “fun.”

Common Algebra Mistake: How to Understand a Negative Sign in Front of Parentheses


Certain areas of algebra are like pebbles in your shoe: looked at closely they’re tiny. And yet they are “oh-so-bothersome!”

As a tutor, I’ve long felt this way about a negative sign before parentheses. It’s a small thing, and it seems simple to grasp to those who get it. Yet students make so many mistakes when facing this situation, so to them it’s extremely irritating!

And there I was again, trying to help a girl understand how to simplify this expression:
– (– 5x + 3y – 7)

However this time I came up with something different, the word “opposite.”

I talked for a moment with my tutee about the idea of opposites, and then I started out like this:

Q:  So, what’s the opposite of black?

She replied:  White (with the teenage “that’s-totally-obvious-what are you-doing?-insulting-my-intelligence? accent)

I told her not to worry, this would lead back to the problem. Next I gave her two terms for which she were to find the opposite, as in:

Q:  opp (tall, happy)

She wrote:   (short, sad), still wondering …

And I continued:

Q:  opp (heavy, up)

She wrote:  (light, down), sighing.

Then I explained that in math we express the idea of “opposite” with nothing more than the negative sign.

Then I gave her some problems with the negative sign:

Q:  –  (cold, left)

A:  (hot, right)

and

Q:  –  (under, near)

A:  (over, far)

She was still giving me that “this-is-so-easy-I-could-die” kind of look. When I thought about that, I realized it was good!

Next I  explained that in math, just as in real life, there are opposites. And we find mathematical opposites by examining signs. For example, the opposite of 5 is – 5; opposite of – 3/4 is 3/4; opposite of – 3x is 3x; opposite of y is – y, and so on.

Then I gave her these problems:

Q:  – (+ 2x, – 5)

Still she was with me:  – 2x, + 5

and

Q:  – (– 4y, + 3x, – 6)

A:  + 4y, – 3x, + 6

The sighing was slowing down, finally. Then I simply told her that we’re going to “lose” the comma (how’s that for modern slang!), both in the original expression and in their answer. Then I gave her a new problem:

Q:  – (5a – 3a – 9)

This puzzled her a bit. So I explained that she needs to mentally group the term with the sign that lies to the left. And that if no sign is showing, as for leading positive terms, she needs to mentally insert the invisible positive sign:  5 becomes + 5;  2a becomes + 2a. Once she got that, she was able to proceed:

Q:  – (5a – 3a – 9)

A:  – 5a + 3a + 9

And so on … one success after another. The concept was sticking. And best of all, she had a conceptual framework — the concept of opposite — that she could “lean against” any time she got stuck.

The longer I tutor the more I realize that this kind of conceptual framework — a story or concept we know from everyday life, which relates to the algebra in a direct way — is a big key to helping students grasp algebra. I use these kinds of stories in my book, the Algebra Survival Guide, providing stories we know from everyday life, which serve as analogies that show how the math works. For example, in the Guide I use a “tug-of-war” analogy to show how you solve problems like:  – 3 + 8.

– 3 + 8

Tur-of-War Teaches – 3 + 8

I’ve had so much success with this “story”-approach to algebra that I am working on an eBook that provides a whole litany of stories that work for algebra. It is fun to work on, and kids like this approach because it gives them a new way — an everyday way — to relate to the math.

So in any case, my suggestion is that when you teach or review the concept of negative signs before parentheses, you might just try the “opposites”  approach and see how it works with your students.

Addition and Subtraction: More Bad Behavior by Dear Aunt Sally


Attention:  Dear Aunt Sally may not be fit for teaching students algebra!

A problem has been discovered in sweet Aunt Sally’s little memory trick:  Please Excuse My Dear Aunt Sally.

Actually, make that two problems.

The first, revealed in my 9/9 post below, is that Aunt Sally wrongly makes students think they’re supposed to multiply before dividing. That’s because the word My (standing for MULTIPLY) comes before Dear (standing for DIVIDE).

Countless students have been deceived into thinking they’re supposed to multiply before dividing [See the 9/9 post for the full run-down on this problem.]

Today I want to point out another problem, and offer two solutions.

The second problem is that, since “Aunt” (standing for ADD) comes before “Sally” (standing for SUBTRACT), countless other students have been led to think they are supposed to ADD before they SUBTRACT.

Well, what are students supposed to do?

First of all, students need to realize that adding and subtracting are at exactly the same level of hierarchy as each other. But if that’s true, how can students ever decide which to do first.

Easy! Same solution as with multiplying and dividing. We simply look to see which of these  operations is written first as we read the problem left to right.

Example:  in the expression  8 + 3 – 4, the addition symbol precedes the subtraction symbol, so here we add before subtracting. And we simplify the expression like this:

8 + 3 – 4
=  11 – 4
= 7

But in the expression   8 – 3 + 4
the subtraction symbol is written before the addition symbol, so here we subtract before we add, and we simplify the expression like this:

8 – 3 + 4
=  5 + 4
=  9

It’s really that simple. Pay attention to which operation sign comes first as you read the problem from left to right. Then do the operations in the correct order based on that.

One other solution:  in my book, the Algebra Survival Guide, I get away from the Please Excuse My Dear Aunt Sally approach, as I create my own memory trick, one that involves Strawberry Mousse. If you want to take a look at this approach, check out my book at this site.

From the homepage, click the link that says:  View Sample Chapters of the Algebra Survival Guide, and download the chapter on Positive and Negative
Numbers.

Cover of

Cover via Amazon

.