Kiss those Math Headaches GOODBYE!

How to Find out if 6 Divides in Evenly – Divisibility by 6

Image via Wikipedia

So far we’ve learned fun & easy divisibility tricks for the numbers 3 and by 4. Learning these tricks helps us reduce fractions with serious speed, and it helps us perform other math operations with a lot more ease. So let’s keep the learning
process going.

[Note:  If this is the first of these divisibility blogs that you have seen, search this blog for posts about divisibility by 3 and by 4; that way you’ll get caught up with the flow of these posts.]

The trick for 5 is incredibly simple:  5 goes into any number with a ones digit of 5 or 0. That is all you need to know. Not much else to say about 5.

And here is the trick for 6:  6 divides into any number that is divisible by BOTH 2 and 3. In other words, for the number in question, check to see if both 2 and 3 go in evenly. If they do, then 6 must also go in evenly. But if EITHER 2 or 3 does NOT go into the number, then 6 definitely will NOT go in. So you need divisibility by BOTH 2 AND 3 … in order for the trick to work.

Here’s an alternative way to say this trick, a way some kids find easier to grasp:  “6 goes into all even numbers that are divisible by 3.”

EXAMPLE 1:  74 — 2 goes in, but 3 does not, so 6 does NOT go in evenly.

EXAMPLE 2:  75 — 3 goes in, but 2 does not, so 6 does NOT go in evenly.

EXAMPLE 3:  78 — 2 and 3 BOTH go in evenly, so 6 DOES go in evenly.

Notice that since the tricks for 2 and 3 are quite simple, this trick for 6 is really quite simple too. It is NOT hard to use this trick even on numbers with a bunch of digits.

EXAMPLE 4:  783,612 — 2 goes in, and so does 3, so 6 DOES go in evenly. [checking for 3, note that you need to add only the digits 7 & 8. 7 + 8 = 15, a multiple of 3, so this large number IS divisible by 3.]

Now give this a try yourself with these numbers. For each number tell whether
or not 2, 3 and 6 will divide in evenly.

PROBLEMS:
a)  84
b)  112
c)  141
d)  266
e)  552
f)  714
g)  936
h)  994
i)  1,245
j)  54,936

ANSWERS:
a)  84:  2 yes; 3 yes; 6 yes
b)  112:  2 yes; 3 no; 6 no
c)  141:  2 no; 3 yes; 6 no
d)  266:  2 yes; 3 no; 6 no
e)  552:  2 yes; 3 yes; 6 yes
f)  714:  2 yes; 3 yes; 6 yes
g)  936: 2 yes; 3 yes; 6 yes
h)  994: 2 yes; 3 no; 6 no
i)  1,245:  2 no; 3 yes; 6 no
j)  54,936: 2 yes; 3 yes; 6 yes

Josh Rappaport is the author of five books on math, including the Parents Choice-award winning Algebra Survival Guide. If you like how Josh explains these problems, you’ll certainly  like the Algebra Survival Guide and companion Workbook, both of which are available on Amazon.com  Just click the links in the sidebar for more information!

Divisibility: Find out if 3 divides evenly into an integer

Quick:  What English word has 12 letters, almost half of which are are the letter “i” — well, 5 of the 12, to be exact?

Why it’s the word “D-I-V-I-S-I-B-I-L-I-T-Y” — a great thing to understand if you’re going to spend any amount of time doing math. And guess what:  virtually ALL students do a fair amount of math, so everyone would do well to master the tricks of divisibility.

With the tricks for divisibility in your command, you will have a much easier time:

—  reducing fractions
—  multiplying fractions
—  dividing fractions
—  adding and subtracting fractions
—  finding the GCF and LCM
—  simplifying ratios
—  solving proportions
—  factoring algebraic expressions
—  factoring quadratic trinomials
—  Need I say more?

I’m sure  you get the point — divisibility tricks are handy to know.

Since the tricks of divisibility are fun and interesting, too, I’ll share as many as I can think of. If, after I’m done, you know tricks I have not mentioned, feel free to share them as comments. Or, if you know any additional tricks for the numbers I’m covering, share those! It’s always fun to learn ways to get faster at math.

Today, I’ll share the trick that tells us whether or not a number is divisible by 3. Now many of you probably know  the basic trick. But even if you do, don’t skip this blogpost. For after I show how this trick is usually presented, I’ll share a few extra tricks that most people don’t know, tricks that make the basic trick even easier to use.

Here’s how the trick is usually presented.

Take any whole number and add up its digits. If the digits add up to a multiple of 3 (3, 6, 9, 12, etc.), then 3 divides into the original number. And if the digits add up to a number that is not a multiple of 3 (5, 7, 8, 10, 11, etc.), then 3 does not divide into the original number.

Example A:  Consider 311.

Add the digits:  3 + 1 + 1  = 5

Since 5 is NOT a multiple of 3, 3 does NOT divide into 311 evenly.

Example B:  Consider 411.

Add the digits:  4 + 1 + 1  =  6

Since 6 IS a multiple of 3, 3 DOES divide into 411 evenly.

Check for yourself:

311 ÷ 3 = 103.666 … So 3 does NOT divide in evenly.

But 411 ÷ 3  =  137 exactly. So 3 DOES divide in evenly.

Isn’t it great how reliable math rules are? I mean, they ALWAYS work, if the rule is correct. In what other field do we get that level of certainty?!

Corollary #1:

Now, to make the rule work even faster, consider this trick. If the number in question has any 0s, 3s, 6s, or 9s, you can disregard those digits. For example, let’s say you need to know if 6,203 is divisible by 3. When adding up the digits, you DON’T need to add the 6, 0 or 3. All you need to do is look at the 2. Since 2 is NOT  a multiple of 3, 3 does NOT go into 6,203.

So now try this … what digits do you need to add up in the following numbers? And, based on that, is the number divisible by 3, or not?

a)  5,391
b)  16,037
c)   972,132

Answers:

a)  5,391: Consider only the 5 & the 1. DIVISIBLE by 3.
b)  16,037: Consider only the 1 & 7. NOT divisible by 3.
c)   972,132: Consider only the 7, 2, 1 & 2. DIVISIBLE by 3.

Corollary #2:

Just as you can disregard any digits that are 0, 3, 6, and 9, we can also disregard pairs of numbers that add up to a sum that’s divisible by 3. For example, if a number has a 5 and a 4, we can disregard those two digits, since they add up to 9. And if a number has an 8 and a 4, we can disregard them, since they add up to 12, a multiple of 3.

Try this. See which digits you need to consider for these numbers. Then tell whether or not the number is divisible by 3.

a)  51,954
b)  62,497
c)  102,386

Answers:

a)  51,954: Disregard 5 & 1 (since they add up to 6); disregard the 9; disregard the 5 &4 (since they add up to 9). So number is DIVISIBLE by 3. [NOTE:  If you can disregard all digits, then the number IS divisible by 3.]
b)  62,497: Disregard 6; disregard 2 & 4 (Why?); disregard 9. Consider only the 7. Number is NOT divisible by 3.
c)  102,386: Disregard 0, 3, 6. Disregard 1 & 2 (Why?). Consider only the 8. Number is NOT divisible by 3.

See how you can save time using these corollaries?

Using the trick and the corollaries, determine which numbers you need to consider, then decide whether or not 3 divides into these numbers.

a)  47
b)  915
c)  4,316
d)  84,063
e)  25,172
f)  367,492
g)  5,648
h)  12,039
i)  79
j)  617
k)  924

ANSWERS:

a)  47:  Consider the 4 and 7. Number NOT divisible by 3.
b)  915:  Consider no digits. Number IS divisible by 3.
c)  4,316:  Consider the 4, 1. Number NOT divisible by 3.
d)  84,563:  Consider only the 5. Number NOT divisible by 3.
e)  71,031:  Consider the 7, 1, 1. Number IS divisible by 3.
f)  367,492:  Consider only the 7. Number NOT divisible by 3.
g)  5,648:  Consider only the 5. Number NOT divisible by 3.
h)  12,039:  Consider no digits. Number IS divisible by 3.
i)  79:  Consider only the 7. Number NOT divisible by 3.
j)  617:  Consider the 1, 7. Number NOT divisible by 3.
k)  927:  Consider no digits. Number IS divisible by 3.

From GPGCF to GCF … in two easy steps

Once you know the GPGCF, you’re two easy steps from finding the GCF.
[If you don’t know how, see my last post:  “Recent Insight on the GCF (and GPGCF)”] That’s one of the benefits of finding the GPGCF — speed in getting the GCF! Here are the short, sweet steps:

1)  Find all factors of the GPGCF, and list them from largest to smallest.

2) Starting with the largest factor and working your way down the list, test to find the first factor that goes into both numbers. The first (largest) to do so is the GCF. You can bet on it!

Example 1 (Easy):  Find GCF for 30 and 42.

1st)  GPGCF is 12. Factors of 12, greatest to least, are 12, 6, 4, 3 and 2.

2nd)  Largest factor to go evenly into 30 and 42 is 6. So 6 is GCF.

Example 2 (Harder):  Find GCF for 72 and 120.

1st)  GPGCF is 48. Factors of 48, greatest to least, are 48, 24, 16, 12, 8, 6, 4, 3 and 2.

2nd)  Largest factor to go evenly into 72 and 120 is 24. So 24 is GCF.

NOW TRY THESE —

For each pair:

1) Find GPGCF and say if it is the difference or smaller #.
2) List factors of GPGCF, greatest to least.
3) Find GCF.

a)  8 and 12

b)  16 and 40

c)  18 and 63

d)   56 and 140

ANSWERS:

a)  8 and 12
GPGCF = 4 (difference)
Factors of 4:  4 and 2
GCF = 4

b)  16 and 40
GPGCF = 16 (smaller #)
Factors of 16:  16, 8, 4 and 2
GCF = 8

c)  18 and 66
GPGCF = 18 (smaller #)
Factors of 18:  18, 9, 6, 3 and 2
GCF = 6

d)  56 and 76
GPGCF  =  20 (difference)
Factors of 20:  20, 10, 5, 4 and 2
GCF  =  4

Recent insight on the GCF (and GPGCF)

A while back I wrote a post about the GCF, and mentioned that there’s a number  related to it — a number that I call the GPGCF. “GPGCF” stands for the “Greatest Possible Greatest Common Factor.”

In short, the GPGCF is a number that sets an upper limit for the size of the GCF. I’ve seen many students struggle when searching for the GCF, seeking hither and yon for it. I had a sense that students were checking numbers that were too large. That’s what led me to try to figure out what must the the upper limit for the GCF.

If you check out that post (10/25/10), you’ll see that, for any two numbers, I said that the difference between those numbers has to be the GPGCF.

And I was correct, to a degree.

But I recently realized that my little theory needs modifying.

For while the difference between any two numbers can be the upper limit for the GCF, that difference is not the only quantity that can set an upper limit for the GCF. There’s another quantity that plays a role.

That other quantity, I recently realized, is the size of the smaller of the two numbers.

Take the numbers 8 and 24, for example.

The difference between these two numbers is 16, so I would have said that 16 is the upper limit for the GCF. But there’s actually another quantity that limits the size of the GCF, and that quantity is 8. For since the GCF of 8 and 24 must by definition fit into both 8 and 24, it must fit into 8. And common sense tells us that there’s no number larger than 8 that can fit into 8! So the size of this number — the smaller of the two numbers — also sets an upper limit for the size of the GCF.

So my revised theory about the GPGCF is this:  when you need to find the GCF for any two numbers, look at two quantities:  1) the smaller of the two numbers, and 2) the difference between the two numbers. Both of these quantities constrains the size of the GPGCF. So therefore, whichever of these is smaller IS the GPGCF. Once you’ve found the GPGCF, that makes it easier to find the actual GCF.

I know this sounds very abstract, so let’s look at a few examples to see what I’m blabbering on about.

Example 1:  What’s the GPGCF for 6 and 16?

Smaller number is 6; difference is 10.
6 and 10 both limit the size of the GCF, but
6 is less than 10, so 6 is the GPGCF.

Example 2:  What’s the GPGCF for 8 and 12?

Smaller number is 8; difference is 4.
4 is less than 8, so 4 is the GPGCF.

Example 3:  What’s the GPGCF for 30 and 75?

Smaller number is 30; difference is 45.
30 is less than 45, so 30 is the GPGCF.

Example 4:  What’s the GPGCF for 28 and 42?

Smaller number is 28; difference is 14.
14 is less than 28, so 14 is the GPGCF.

Now, let’s go one step further. From here, how do we figure out the GCF? I’ve done a bit more thinking about this, too, and I’ll share those ideas in my next post.

How to Find the LCM – FAST!!!

Ever need to find the LCM (same as the LCD) for a pair of two numbers, but you don’t feel like spending two hours writing out the multiples for the numbers and waiting till you get a match.

Of course you need to do this — a lot!  Example:  whenever you add fractions with different denominators you need to find the common denominator. That is the LCM.

Here’s a quick way to do this.

The only way to teach this is by example, so that’s what I’ll do — by finding the LCM for 18 and 30.

Step 1)  Find the GCF for the two numbers.

For 18 and 30, GCF is 6.

Step 2)  Divide that GCF into either number; it doesn’t matter which one you choose, so choose the one that’s easier to divide.

Choose 18. Divide 18 by 6. Answer = 3.

Step 3)  Take that answer and multiply it by the other number.

3 x 30  =  90

Step 4)  Celebrate …

… because the answer you just got is the LCM. It’s that easy.

Note:  if you want to check that this technique does work, divide by the other number, and see if you don’t get the same answer.

PRACTICE:  Find the LCM (aka LCD) for each pair of numbers.

a)  8 and 12
b)  10 and 15
c)   14 and 20
d)  18 and 24
e)  18 and 27
f)  15 and 25
g)  21 and 28
h)   20 and 26
j)   24 and 30
k)  30 and 45
l)  48 and 60

ANSWERS:

a)  8 and 12; LCM =  24
b)  10 and 15; LCM =  30
c)   14 and 20; LCM =  140
d)  18 and 24; LCM =  72
e)  18 and 27; LCM =  54
f)  15 and 25; LCM =  75
g)  21 and 28; LCM =  84
h)   20 and 26; LCM =  260
j)   24 and 30; LCM =  120
k)  30 and 45; LCM =  90
l)  48 and 60; LCM =  240

Once you learn this trick, have fun using it, as it is a real time-saver!

Josh Rappaport is the author of the Algebra Survival Guide and Workbook, which comprise an award-winning program that makes algebra do-able! The books break algebraic concepts down into manageable chunks and provide instruction through a captivating Q&A format. Josh also is the author of PreAlgebra Blastoff!, which presents an engaging, hands-on approach (plus 16-page color comic book) for learning the rules of integers. Josh’s line of unique, student-centered math-help books is published by Singing Turtle Press and can be found on Amazon.com