## Kiss those Math Headaches GOODBYE!

### How to Divide ANY Number by a Radical — Fast!

Here’s a super-quick shortcut for  DIVIDING ANY NUMBER by a RADICAL.

Note: I’m using this symbol () to mean square root.
So √5 means the square root of 5;  √b means the square root of b.
And … if you want to learn why this shortcut works, see my explanation at the end of the blog.

This shortcut lets you mentally do problems like the following three problems. That means you can do such problems in your mind rather than having to work them out on paper.

a)  12 / √3

b)  10 / √2

c)  22 / √5

Here are three terms I’ll use in explaining this shortcut.

In a problem like 12 divided by √3, which I am writing as:  12 / √3,

12  is  the dividend,

3  is  the number under the radical,

√3  is  the radical.

## The Shortcut, Used for  12 / √3:

1.  Divide the dividend by the number under the radical.
In this case, 12 / 3 = 4.
2. Take the answer you got, 4, and multiply it by the radical.
4 x √3  =  4√3

3. Shake your head in amazement because that, right there, is the ANSWER!

## Another Example:  10 / √2

1.  Divide the dividend by the number under the radical.
In this case:   10 / 2  =  5
2. Take the answer you got, 5, and multiply it by the radical.
5 x √2  =  5√2.  (Don’t forget to shake head in amazement!)

## Third Example:  22 / √5

1.  Divide the dividend by the number under the radical.
In this case,  22 divided by 5 = 22/5  (Yup, sometimes you wind up with a fraction or with a decimal; that’s why I’m giving an example like this.)
2. Take the answer you got, 22/5, and multiply it by the radical.
22/5 x √5 =  22/5 √5.  [Note: the √5 is in the numerator, not
in the denominator. To make the location of this √5 clear, it’s best
to write the answer:  2√5 / 5].

## NOW TRY YOUR HAND by doing these PRACTICE PROBLEMS:

a)   18 / √3

b)   16 / √2

c)   30 / √5

d)   10 / √3

e)   12 / √5

– – – – – – – – – – – – – – – – – –

a)   18 / √3  = 6√3

b)   16 / √2  = 8√2

c)   30 / √5  = 6√5

d)   10 / √3  = 10√3/3

e)   12 / √5  = 12√5/5

– – – – – – – – – – – – – – – – – –

## WHY THE SHORTCUT WORKS:

The shortcut works because we rationalize the denominator of a fraction whenever the denominator contains a radical. Here’s the shortcut in general terms, with:

a  =  the dividend,

b  =  the number under the radical,

√b  =  the radical.

a / √b

=   a
√b

=   a     √b    =   a √b
√b   √b            b

Notice: we started with:  a / √b.

And keeping things equal, we ended up with  a √b / b.

This shows that the shortcut works in general. So it works in all specific cases as well!

– – – – – – – – – – – – – – – – – –

Final note: the number under the radical is called the radicand. But that term is so close to the term radical that I thought it would be less confusing if I just called this the number under the radical.

### How to find the GCF of 3+ Numbers — FAST … no prime factorizing

Suppose you need to find the GCF of three or more numbers, and you’d really prefer to avoid prime factorizing. Is there a way? Sure there is … here’s how.

High-Octane Boost for Math Ed

Example:  Find the GCF for  18, 42 and 96

Step 1)  Write the numbers down from left to right, like this:

………. 18     42     96

[FYI, the periods: …. are there just to indent the numbers. They have no mathematical meaning.]

Step 2)  Find any number that goes into all three numbers. You don’t need to choose the largest such number. Suppose we use the number 2. Write that number to the left of the three numbers. Then divide all three numbers by 2 and write the results below the numbers like this:

2    |  18     42     96
……..  9     21     48

Step 3)  Find another number that goes into all three remaining numbers. It could be the same number. If it is, use that. If not, use any other number that goes into the remaining numbers. In this example, 3 goes into all of them. So write down the 3 to the left and once again show the results of dividing, like this:

2    |  18     42     96
3    |    9     21     48
……… 3      7      16

Step 4)  You’ll eventually reach a stage at which there’s no other number that goes into all of the remaining numbers. Once at that stage, just multiply the numbers in the far-left column, the numbers you pulled out. In this case, those are the numbers:  2 and 3. Just multiply those numbers together, and that’s the GCF. So in this example, the GCF is 2 x 3 = 6, and that’s all there is to it.

Now try this yourself by doing these problems. Answers are below.

a)   18, 45, 108
b)   48, 80, 112
c)   32, 72, 112
d)   24, 60, 84, 132
e)   28,  42, 70, 126, 154

a)   GCF =  9
b)   GCF =  16
c)   GCF =  8
d)   GCF =  12
e)   GCF =  14

### How to Convert a Linear Equation from Standard Form to Slope-Intercept Form

Suppose you’re given a linear equation in standard form and you need to convert it to slope-intercept form. You’ll be amazed how fast you can do this, if you know the “trick” I’m showing you here.

High-Octane Boost for Math Ed

First, let’s review the key info from my post: How to Transform from Standard Form to Slope-Intercept Form.

That post shows how to pull out the the slope and y-intercept from a linear equation in standard form.

Remember that standard form is Ax + By = C, where A, B, and C are constants (numbers).

Given the equation in standard form, take note of the  values of A, B, and C.
For example, in the equation, – 12x + 3y = – 9,   A = – 12, B = 3, and C = – 9

Then, based on the info in yesterday’s post, we get the slope by making the fraction:  – A/B.

And we get the y-intercept by making the fraction:  C/B

New info for today: once you have the slope and y-intercept, just plug them in for m and b in the general slope-intercept equation:  y = mx + b

Here’s the whole process, demonstrated for two examples.

Ex. 1:  Given, 8x + 2y = 12, A = 8 B = 2, C = 12.
So the slope = – A/B = – 8/2 = – 4. y-intercept =  12/2 = 6
So the slope-intercept form is this:  y = – 4x + 6

Ex. 2:  Given, – 5x + 3y = – 9, A = – 5, B = 3, C = – 9.
So the slope = – A/B = 5/3,  y-intercept =  – 9/3 = – 3
So the slope-intercept form is this:  y = 5/3x  – 3

Now “give it a roll.” Once you get the hang of this, try the process without writing down a single thing. You might get a pleasant jolt of power when you see that you can do this conversion in your head.

Conversion Problems (Answers at bottom of post)

1)   – 4x + 2y  =  14

2)    20x – 5y  =  – 15

3)  – 21x – 7x  =  35

4)  – 18x  + 6y  =  – 21

5)    17x + 11y  =  22

6)    – 7x + 11y  =  – 44

7)    36x – 13y  =  – 52

8)  – 8x  + 5y  =  – 17

1)   y  =  2x + 7

2)   y  =  4x + 3

3)  y  =  – 3x – 5

4)  y  =  3x – 7/2

5)   y  =  – 17/11x + 2

6)    y  =  7/11x – 4

7)    y  =  36/13x  +  4

8)  y  =  8/5x –  17/5