Kiss those Math Headaches GOODBYE!


 

Here’s a super-quick shortcut for  DIVIDING ANY NUMBER by a RADICAL. 

Note: I’m using this symbol () to mean square root.
So √5 means the square root of 5;  √b means the square root of b.
 And … if you want to learn why this shortcut works, see my explanation at the end of the blog.

This shortcut lets you mentally do problems like the following three problems. That means you can do such problems in your mind rather than having to work them out on paper.

     a)  12 / √3 

     b)  10 / √2

     c)  22 / √5

Here are three terms I’ll use in explaining this shortcut.

In a problem like 12 divided by √3, which I am writing as:  12 / √3,

     12  is  the dividend,

     3  is  the number under the radical,

     √3  is  the radical.

The Shortcut, Used for  12 / √3:

  1.  Divide the dividend by the number under the radical.
    In this case, 12 / 3 = 4. 
  2. Take the answer you got, 4, and multiply it by the radical.
    4 x √3  =  4√3

  3. Shake your head in amazement because that, right there, is the ANSWER!

Another Example:  10 / √2

  1.  Divide the dividend by the number under the radical.
    In this case:   10 / 2  =  5
  2. Take the answer you got, 5, and multiply it by the radical.
    5 x √2  =  5√2.  (Don’t forget to shake head in amazement!)

Third Example:  22 / √5

  1.  Divide the dividend by the number under the radical.
    In this case,  22 divided by 5 = 22/5  (Yup, sometimes you wind up with a fraction or with a decimal; that’s why I’m giving an example like this.)
  2. Take the answer you got, 22/5, and multiply it by the radical.
    22/5 x √5 =  22/5 √5.  [Note: the √5 is in the numerator, not
    in the denominator. To make the location of this √5 clear, it’s best
    to write the answer:  2√5 / 5].


NOW TRY YOUR HAND by doing
these PRACTICE PROBLEMS:

a)   18 / √3  

b)   16 / √2  

c)   30 / √5  

d)   10 / √3  

e)   12 / √5

– – – – – – – – – – – – – – – – – –

ANSWERS:

a)   18 / √3  = 6√3

b)   16 / √2  = 8√2

c)   30 / √5  = 6√5

d)   10 / √3  = 10√3/3

e)   12 / √5  = 12√5/5

– – – – – – – – – – – – – – – – – –

WHY THE SHORTCUT WORKS:

The shortcut works because we rationalize the denominator of a fraction whenever the denominator contains a radical. Here’s the shortcut in general terms, with:

     a  =  the dividend,

     b  =  the number under the radical,

     √b  =  the radical.

a / √b

=   a
    √b

=   a     √b    =   a √b
    √b   √b            b

Notice: we started with:  a / √b.

And keeping things equal, we ended up with  a √b / b.

This shows that the shortcut works in general. So it works in all specific cases as well!

– – – – – – – – – – – – – – – – – –

Final note: the number under the radical is called the radicand. But that term is so close to the term radical that I thought it would be less confusing if I just called this the number under the radical.

 

 

 

 

 

 


So, you’d think that combining a positive number and a negative number would be a fairly straightforward thing, huh?

Well, unfortunately, a lot of students think it’s easy. They think it’s too easy. They think there’s one simple rule that guides them to the very same kind of answer every time. And that’s exactly where they get into trouble.

The truth is that combining a positive and a negative number is a fairly complicated operation, and the sign of the answer is dependent on a nmber of factors.

This video reveals a common mistake students make when tackling these problems. it also shows the correct way to approach these problems, using the analogy of having money and owing money to make everything make sense.

So take a look and see if this explanation doesn’t end the confusion once and for all.

And don’t forget: there are practice problems at the end of the video. Do those to make sure you’ve grasped the concept.

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Here’s a common mistake, and a very understandable one, too. Students need to combine two negative numbers, and they, of course, wind up with an answer that’s positive. Why? Because, they’ll say — pointing out that you yourself have told them this —  “Two negatives make a positive!”

This video gets to the root of this common misunderstanding by helping students understand exactly when two negatives make a positive, and when they don’t.

 

Make sure you watch the whole video, as there are practice problems at the end, along with their answers.

 

 

 

 

 

 

 

 

 


The Second Edition of both the Algebra Survival Guide and its companion Workbook are officially here!

Check out this video for a full run-down on the new books, and see how — for a limited time — you can get them for a great discount at the Singing Turtle website.

 

Here’s the PDF with sample pages from the books: SAMPLER ASG2, ASW2.

And here’s the website where you can check out the books more fully and purchase the books.

 

 

 

 

 

 

 


This video shows the fastest and easiest way I know of for factoring quadratic trinomials. Give it a watch and see if you agree.


Yep, factoring quadratic trinomials is a key skill for Algebra 1. And the process can seem intimidating, especially at first.

But it’s actually surprisingly easy if taught in a certain way. And of course, that’s what I’m going to do here … teach it in the easiest and fastest way possible.

Believe it or not, there’s a reason teachers make you factor trinomials. They may not have told you yet, but they do this so you can solve equations with quadratic trinomials. Once you can factor one of these little beasts, solving an equation that contains one becomes amazingly simple. But without the ability to factor the trinomial, solving it is much more difficult.

You’ll notice that this video starts with four preliminary concepts. These are pretty simple concepts, and for most of you these will feel like review. But make sure you know all of those concepts before you go on, especially the concept of absolute value.

With these preliminaries “under your belt,” factoring trinomials will be rather easy.

To put this video into perspective, it shows how to factor two of the four kinds of quadratic trinomials, those with the pattern of + + + and + – +. After this video, I will post another that shows how to factor quadratic trinomials with the patterns of + + – and + – –.

Also, my first two videos on factoring trinomials are for trinomials whose a-value = + 1. There’s a different, more complicated process for factoring quadratic trinomials whose a-value is not = + 1.  I’ll go over that in a few later videos.

In any case, this will get you started in a way that shouldn’t feel too painful. Follow along and good luck.

 

 

 

 


How do you get math terms out of parentheses? And what happens to those terms when you remove the parentheses?

It seems like the process should be simple. But this issue often plagues students; they keep getting points off on tests, quizzes, homework assignments.  What’s the deal?

The deal is that there’s a specific process you need to follow when taking terms out of parentheses, and what you do hinges on whether there’s a positive sign (+) or a negative sign (–) in front of the parentheses.

But not to worry. This video on this page settles the question once and for all. Not only that, but the video provides a story-based approach that you can teach (if you’re an instructor) or learn (if you’re a student) and remember (no matter who you are). Why? Because stories are FUN and MEMORABLE.

So kick back and relax (yes, it’s math, but you have a right to relax) and let the video show you how this process is done.

And in customary style, I present practice problems (along with the answers, too) at the end of the video so you can be sure you understand what you believe you understand.