Kiss those Math Headaches GOODBYE!

Archive for the ‘Making Math Fun’ Category

Everyday Life Sparks Mathematical Puzzles


So here’s the situation: you’re at the breakfast table, enjoying a bowl of steaming-hot steel-cut oats and maple syrup, and you just poured yourself a mug of black coffee. But then you realize you want to pour some milk in the coffee (sorry, purists). But the milk is in the frig, six feet away. So of course you walk to the frig, grab the milk, bring it to the table, pour some in your coffee, return the milk to the frig and sit back down. Question: could you have done this more efficiently?

Yes, of course. You could have brought your cup of coffee with you as you walked to the frig, poured the milk right there at the frig, returned the milk, and then walked back to the table.

Being Smart?

“Morning Joe”

When I realized this this morning, I thought … hmmm. Had I used a bit of forethought, I would save myself an entire round trip from the table to the frig. And while I have no problem making that extra trip (hey, just burned 1.3 calories, right?), the experience made me wonder if anyone has ever developed a mathematics of efficiency for running errands.

I could imagine someone taking initial steps for this. One would create symbols for the various aspects of errands. There would be a general symbol for an errand, and there would be a special ways of denoting: 1) an errand station (like the frig), 2)  an errand that requires transporting an item (like carrying the mug), 3) an errand that requires doing an activity (pouring milk) with two items (mug and milk) at an errand station, 4) an errand that involves picking something up (picking up the mug), and so on. Then one could schematize the process and use it to code various kinds of errands. Eventually, perhaps, one could use such a system to analyze the most efficient way to, say, carry out 15 errands of which 3 involve transporting items, 7 involve picking things up, and 5 involve doing tasks at errand stations. Don’t get me wrong! I have not even begun to try this, but I’ve studied enough math that I can imagine it being done, and that’s one thing I love about math; it allows us to create general systems for analyzing real-world situations and thereby to do those activities more intelligently.

Of course, one reason I’m bringing this up is to encourage people to think more deeply about things that occur in their everyday lives. Activities that appear mundane can become mathematically intriguing when investigated. A wonderful example is the famous problem of the “Bridges of Konigsberg,” explored by the prolific mathematician Leonhard Euler nearly 300 years ago.

Euler in 1736 was living in the town of Konigsberg, now part of Russia. The Pregel River, which flows through Konigsberg, weaves around two islands that are part of the town, and a set of seven lovely bridges connect the islands to each other and to the town’s two river banks. For centuries Konigsberg’s residents wondered if there was a way to take a walk, starting at Point A, crossing each bridge exactly once, and return to Point A. But no one had found a way to do this.

One of the famous Seven Bridges of Konigsberg

One of the famous Seven Bridges of Konigsberg

Enter Euler. The great mathematician sat down and simplified the problem, turning the bridges into abstract line segments and transforming the bridge entrance and exits into points. Eventually Euler rigorously proved that there is no way to take the walk that people had wondered about. This would be just an interesting little tale, but it has a remarkable offshoot. After Euler published his proof, mathematicians took his way of simplifying the situation and, by exploring it, developed two new branches of math:  topology and graph theory. The graph theory ideas that Euler first explored when thinking about the seven bridges sparked a branch of math that’s used today to determine the most efficient ways of connecting servers that form the backbone of the internet!

Of course, there’s also the classic example of Archimedes shouting “Eureka!” and running through the streets naked after seeing water rise in his bathtub. In that moment, Archimedes, who had been trying to help his king figure out if the crown that was just made for him had been created with pure gold, or with an alloy, saw that the water displacement would help him solve the problem. In the end, Archimedes determined that the crown was not pure gold, and the king rewarded the great thinker for his efforts.

As I write this, I find myself wondering if any of you readers can think of other situations in which everyday life experiences led mathematicians or scientists to major discoveries. It would be enlightening to hear more of these stories.

And, if no such stories spring to mind, check out this site, which lists several such stories.  http://www.sciencechannel.com/famous-scientists-discoveries/10-eureka-moments.htm

In any case, the way that such discoveries occur shows that you never know where a seemingly trivial idea might lead … so it’s good to keep your eyes and mind open.

How to Remove (“Unpack”) Algebraic Terms from Parentheses


As you’re probably aware, I’m a big believer in using stories to bring math to life. Especially when you’re teaching tricky concepts, using a story can be the “magic switch” that flicks on the light of understanding. Armed with story-based understanding, students can recall how to perform difficult math processes. And since people naturally like stories and tend to recall them, skills based on story-based understanding really stick in the mind. I’ve seen this over and over in my tutoring.

Stories from My Tutoring Work

The kind of story I’m talking about uses an extended-metaphor, and this way of teaching  is particularly helpful when you’re teaching algebra. Ask yourself: what would you rather have? Students scratching their heads (or tearing out their hair) to grasp a process taught as a collection of abstract steps? Or students grasping  a story and quickly seeing how it guides them in doing the math? I think the answer is probably pretty clear. So with this benefit in mind, let’s explore another story that teaches a critical algebraic skill: the skill of  “unpacking” terms locked inside parentheses.

To get the picture, first imagine that each set of parentheses, weirdly or not, represents a corrugated cardboard box, the kind that moving companies use to pack up your possessions. Extending this concept, the terms inside parentheses represent the items you pack when you move your goodies from one house to another.  Finally, for every set of parentheses (the box), imagine that you’ve hired either a good moving company or a bad moving company. (You can use a good company for one box and a bad company for a different “box” — it changes.) How can you tell whether the moving company is good or bad? Just look at the sign to the left of the parentheses. If the moving company is GOOD, you’ll see a positive sign to the left of the parentheses. If the moving company is BAD, you’ll spot a negative sign there.

Here’s how this idea looks:

+ (    )     The + sign here means you’ve hired a GOOD moving company for this box of stuff.

– (    )     This – sign means that you’ve hired a BAD moving company to pack up this box of things.

Now let’s put a few “possessions” inside the boxes.

+ (2x – 4)  This means a GOOD moving company has packed up your treasured items: the 2x and the – 4.

– (2x – 4)  Au contraire! This means that a BAD moving company has packed up the 2x and the – 4.

[Remember, of course, that the term 2x is actually a + 2x. No sign visible means there’s an invisible + sign before the term.]

What difference does it make if the moving company is GOOD or BAD? A big difference! If it’s a GOOD company, it packs your things up WELL.  Result: when you unpack your items, they come out exactly the same way in which they went into the box. So since a good moving company packed up your things in the expression:  + (2x – 4), when you go to unpack your things, everything will come out exactly as it went in. Here’s a representation of this unpacking process:

+ (2x – 4)

=      + 2x – 4

Note that when we take terms out of parentheses, we call this “unpacking” the terms. This works because algebra teachers fairly often describe the process of taking terms out of (   ) as “unpacking” the terms. So here’s a story whose rhetoric  matches the rhetoric of the algebraic process. Convenient, is it not?

Now let’s take a look at the opposite situation — what happens when you work with a BAD (boo, hiss!) moving company. In this case, the company does such a bad job that when you unpack your items, each and every item comes out  “broken.” In math, we indicate that terms are “broken” by showing that when they come out of the (  ), their signs,  + or – signs, are the EXACT OPPOSITE of what they should be. So if a term was packed up as a + term, it would come out as a – term.  Vice-versa, if it was packed up as a – term, it would come out as a + term. We show the process of unpacking terms packed by a BAD moving company, as follows:

– (2x – 4)

=      – 2x + 4

And that pretty much sums up the entire process. Understanding this story, students will be able to “unpack” terms from parentheses, over and over, with accuracy and understanding.

But since Practice Makes Perfect, here are a few problems to help your kiddos perfect this skill.

PROBLEMS:

“Unpack” these terms by removing the parentheses and writing the terms’ signs correctly:

a)  – (5a + 3)

b)  + (5a – 3)

c)  – (– 3a + 2b – 7)

d)  + (– 3a + 2b – 7)

e)  6 + (3a – 2)

f)  6 – (3a – 2)

g)  4a + 6 + (– 9a – 5)

h)  4a + 6 – (– 9a – 5)

ANSWERS:

a)  – (5a + 3)   =   – 5a – 3

b)  + (5a – 3)  =  + 5a – 3

c)  – (– 3a + 2b – 7)  =  + 3a – 2b + 7

d)  + (– 3a + 2b – 7) = – 3a + 2b – 7

e)  6 + (3a – 2)  =  + 3a + 4

f)  6 – (3a – 2)  =  – 3a + 8

g)  4a + 6 + (– 9a – 5)  =  – 5a + 1

h)  4a + 6 – (– 9a – 5)  =  + 13a + 11


Josh Rappaport is the author of five books on math, including the Parents Choice-award winning Algebra Survival Guide. If you like how Josh explains these problems, you’ll certainly  like the Algebra Survival Guide and companion Workbook, both of which are available on Amazon.com  Just click the links in the sidebar for more information! 

How to Combine Positive & Negative Numbers — Quickly and Easily


If you or someone you know struggles when combining numbers with opposite signs — one positive, the other negative — this post is for you!

To be clear, I’m referring to problems like these:

 – 2 + 7 [first number negative, second number positive], or

+ 13 – 20 [first number positive, second number negative]

To work out the answers, turn each problem into a math-story. In this case, turn it into the story of a tug-of-war battle. Here’s how.

In the first problem, – 2 + 7, view the – 2 as meaning there are 2 people on the “negative” team; similarly, view the + 7 as meaning there are 7 people on the “positive” team.

There are just three things to keep in mind for this math-story:

1)  Every “person” participating in the tug-of-war is equally strong.

2)  The team with more people always wins; the team with fewer people always loses.

3)  In the story we figure out by how many people the winning team “outnumbers” the other team. That’s simple; it just means how many more people are on that team than are on the other team. Example: if the negative team has 2 people and the positive team has 7 people, we say the positive team “outnumbers” the negative team by 5 people, since 7 is 5 more than 2.

Now to simplify such a problem, just answer three simple questions: 

1)  How many people are on each team?
In our first problem, – 2 + 7, there are 2 people on the negative team and 7 people on the positive team.

2)  Which team WINS?
Since there are more people on the positive team, the positive team wins.

3) By how many people does the winning team OUTNUMBER the losing team?
Since the positives have 7 while the negatives have only 2, the positives outnumber the negatives by 5.

Now ignore the answer to the intro question, Question 1, but put together your answers to Questions 2 and 3.

ANSWER TO QUESTION 2:  +

ANSWER TO QUESTION 3:  5

ANSWERS TOGETHER:  + 5

All in all, this tells us that:  – 2 + 7 = + 5

For those of you who’ve torn your hair out over such problems, I have good news …

… THEY REALLY ARE THIS SIMPLE!

But to believe this, it will help to work out one more problem:  + 13 – 20.

Here, again, are the common-sense questions, along with their answers.

1)  How many people are on each team?
In this problem, + 13 – 20, there are 13 people on the positive team and 20 people on the negative team.

2)  Which team WINS?
Since there are more people on the negative team in this problem, the negative team wins.

3) By how many people does the winning team OUTNUMBER the losing team?
Since the negatives have 20 while the positives have only 13, the negatives outnumber the positives by 7.

Just as you did in the first problem, put together your answers to Questions 2 and 3.

ANSWER TO QUESTION 2:  

ANSWER TO QUESTION 3:  7

ANSWERS TOGETHER:  – 7

All in all, this tells us that:  + 13 – 20  = – 7

Now try these for practice:

a)  – 3 + 9

b) + 1 – 4

c)  –  9 + 23

d)  – 37 + 19

e) + 49 – 82

Answer to Practice Problems:

a)  – 3 + 9 = + 6

b) + 1 – 4 = – 3

c)  –  9 + 23 = + 14

d)  – 37 + 19 = – 18

e) + 49 – 82 = – 33

Josh Rappaport is the author of five books on math, including the Parents Choice-award winning Algebra Survival Guide. If you like the way Josh explains these problems, you will very likely like the Algebra Survival Guide and companion Workbook, both of which are available on Amazon.com  Just click the links in the sidebar for more information! 

Let STUDENTS make the math Problems, for a change


If you want students to look at you like you’re crazy — and have fun because you know you’re doing a good thing — try this.

Tell students it’s their turn to make up a math problem.

Math Meeting Board and Lesson

Math Meeting Board and Lesson (Photo credit: Old Shoe Woman 

Yes, they’ll give you that look like, what are you talking about? But it’s o.k. Persist. Not only that … tell them to make up a word problem just like one in the textbook or on the worksheet. And tell them to make it relevant to their own lives.

For example, if you’re doing problems on rate, time and distance, suggest that students make up a skateboarding problem. One of my students came up with this:

You want to skate over to Ted&Tom’s (a local hangout), and you need to get there by 2:15 pm. If you’re 3 miles away and you leave at 1:30, going 4 mph, will you get there in time? [Answer:  You’ll get there right on time, not a minute too soon or too late.]

See how easy it is? Not really hard.

Or, let’s say that you’re doing ratio problems. Suggest that students do a problem on price comparisons. Another one of my tutees came up with this:

Lip gloss is on sale, 4 tubes for $7. At that rate, can you buy 12 tubes if you have exactly $20? [Answer:  No, since you won’t get the special if you have only $6 for the last set of lip gloss tubes.]

The benefits for students are many.

1)  Students start to see that math problems are “all around them.” i.e., They start to see math in their everyday situations. And they start to realize that they can actually use the math you’ve been teaching them to figure out  real-life problems.

2)  By developing their own problems, students grasp the concepts in the problems more deeply. In the same way that we teachers learn by teaching, students learn by making (and solving) their own problems.

3)  Making problems is a creative activity, and once students see they can pull their problems from real life, they start to enjoy the activity. And because this involves creativity, this exercise engages the “creative types” who often feel like math does not “speak to them.”

130423 Image With One of Arthur Koestler Quote...

4)  If you take the activity one step further, you can help students build their critical thinking skills. The one step further is: require that students get a whole number answer for their problem. This requirement forces students to think about how the numbers in the problem affect the value of the answer. And when they need to fine-tune those problem numbers to get out a particular kind of numerical result (like a whole number answer), they learn about the “innards” of the problem. They learn how the problem works more deeply than they would if they only were solving a problem someone else gave them.

5)  If you make the solving process cooperative, you can add even more fun to the process. By this I am suggesting that after students make the problems, they give them to other students to solve them. This way two students can exchange problems. I’ve seen students really get into this. They start making problems harder until they are just at the level that makes their partner “sweat.” But they enjoy this process, and it helps them get to know each other. I’ve found that this is a good way to get some fun socializing into a math class.

One last nice thing:  I’ve found that students cannot actually make up problems if they don’t know how to solve the problems. That means that this exercise tells you, the teacher, which of your students do understand the problem. And if they don’t get it, you can help them get it by helping them make the problem. It’s a nice, indirect way to teach.

So give it a try in your class or teaching situation, whatever that may be. I have a hunch you’ll find it as helpful and enjoyable as I have found it to be.

Summertime Geometry Scavenger Hunt


Here’s a nice summer-days math project …

I just happened to be looking at the NM Highway signs page online a couple of days ago when I saw this nice little list of signs, just below:

NM Highway Signs

NM Highway Signs

I couldn’t help but notice that there are quite a few recognizable geometric figures on this page, and I thought, “This would be a cool thing to show to kids who either have studied, or are studying geometry.”

My suggestion: Show this to your children and ask them how many geometric figures they can recognize.

(more…)

Monday the 13th


Today is Monday, the 13th.

So what, right?

Well, maybe not so fast …

If you have a mathematical/logical bent of mind, you might find that interesting.

Friday the 13th is generally considered a bad luck day. So if that is the case, you might wonder if Monday the 13th would be the logical opposite to Friday the 13th, a good luck day. Afterall, Friday is the end of the workweek, and Monday is the beginning of the workweek.

So in that sense, can it be said that Monday and Friday are opposites? And what might that imply.

So here is the challenge. Compose a logical argument as to whether or not Monday the 13th should be considered a lucky day.

That is the challenge for Monday, the 13th of June 2011.

HINT:  You may want to include information about the “truth value” (truthiness, as Steven Colbert likes to say) of statements and their converses.

REWARD:  The first person who presents a compelling logical argument, one way or the other, wins a $10 gift certificate toward the purchase of any Singing Turtle Press products. All comments must be posted by 1 a.m. on Tuesday, the 14th of June, this year.

How to Understand the LCM (Part 1)


I don’t know about you folks, but I’ve always been a bit disappointed by the various techniques for finding the Least Common Multiple (LCM) for a pair of numbers.

While there are several techniques that “work” — by which I mean techniques we can teach to students and have them learn quickly — I’ve known of no technique that makes good intuitive sense. In other words, I’ve known no technique whose underlying principle felt obvious.

Feeling frustrated, I started looking for a technique that would have that undeniable “ring of truth.”

Coffee, Pi and More

Coffee, Pi and More

And so, after playing around in my “sandbox of numbers” for quite a while,  I’m happy to report that I’ve finally found what I had been looking for.

In today’s post I will show you a way to find the least common multiple that makes sense, at least to me. I hope it will make sense to you as well.

(more…)

James Bond Math Challenge


Math in the movies … if there ever was a cool way to explore math, this has to be it. And if you missed my earlier posts on this, check them out here and here.

Math is Cool!

I was looking through the links to movies with math themes, and a question came up.

On the site showing the movies, the text says that there are “mathematical themes and patterns motivated by math” in the introduction scene for the James Bond movie, Casino Royale, this clip:

I’ve watched the clip a few times, and I have my own ideas as to mathematical themes and patterns.

(more…)

Movie Math: Wake Students Up with Silver Screen Riddles


Last days of the school year … kids getting “antsy.”

Harder and harder to keep their attention … so what’s a teacher to do?

Answer:  Let the media help us with the media generation.

In my May 16 post, I pointed you to a website that showed how math is used in major motion pictures.

Math is Cool!

In this post I’d like to focus on one such reference to math in the movies, and show how you can turn it into a fun “End-of-Year” lesson.

The clip of Die Hard below has a great scene in which the Bruce Willis character needs to solve a mathematical puzzle in less than five minutes to avoid getting blown up. It’s an exciting scene, and the math is interesting.

I suggest that you first have your class watch this clip.

After watching it, review the solution with your class.
(more…)

Memorization in Algebra — They’ll LOVE you for it (later)


Here’s a novel idea …

Bring back math memorization … at the Algebra 1 level!

No — I’ not suggesting that we ask students to memorize the times tables from the 12s to the 20s.

Nix on that because it is NOT critical information for algebra students to have. So it would not serve the greater purpose of these students.

But I am suggesting that we require students to memorize a handful of facts that will make
their algebra experience considerably less painful.

(more…)